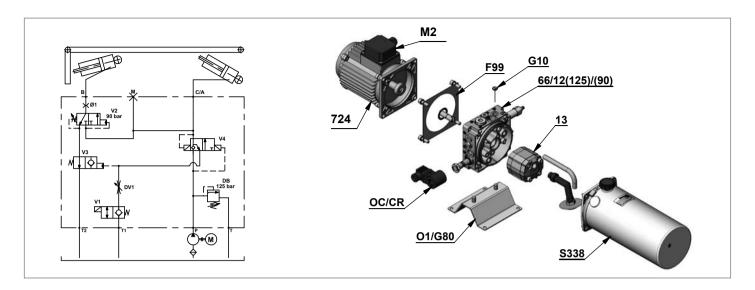


Compact power modules DL series

RE 18306-03

Edition: 12.18 Replaces: 08.14

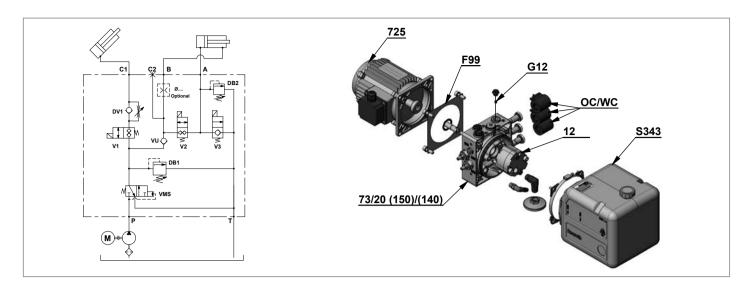

Contents

Ordering details for compact power modules for dock	
leveller with hinged lip (manifold code 66-67)	2
Ordering details for compact power modules for dock	
leveller with telescopic lip (manifold code 73)	4
General Technical Data for Compact Power Module DL	6
A.C. Electric Motor Compact Mounting Style for Power	
Module Type DL	11
Central Manifold DL	13
Flow Restrictor	16
Coil	17
Connectors	18
Gear Pumps	19
Oil Tanks for DL	20
Mounting position	22
Terminal Box Position for A.C. Motors	22
Mounting Brackets	23

2 **DL series** | Compact power modules Ordering details for compact power modules for dock leveller with hinged lip (manifold code 66-67)

Ordering details for compact power modules for dock leveller with hinged lip (manifold code 66-67)

01	02		03			04			05		06		07		80		09	9
DL	.	-		-		(_)	-		-		-		-		-	/_	/
Famil	у																	
01	Power mo	dule ty	pe															DL
A.C. E	Electric mo	tor																
02	Select the	requir	ed AC m	otor sl	hown	in the	catalo	gue. (See page	11)								
Junct	ion Elemer	nts																_
03	The code of	of the	Junction	Eleme	ent is	shown	in the	page	after the	select	ted AC motor	r.						
Centr	al Manifolo	ł																
04	Central Ma								Request	Settin	g of the Reli	ef Valv	e DB in B	ar in b	orackets +	Requ	est	
Flow	restrictor																	_
05	Select the	requir	ed settir	ng of fl	ow re	stricto	r on B	line (see page	16)								
Coil N	Model and	Conne	ctor															
06	Choose th	e requ	ired coil	Voltag	ge and	I the re	equirec	l Conr	ector. (S	See pag	ge 17)							
Gear	pumps																	
07	Select the	requir	ed pump	o. (See	page	19)												
Oil Ta	nk																	
08	Select the	requir	ed Oil Ta	ank (Se	ee pa	ge 20)												
Moun	ting Positi	on and	l Mounti	ng Bra	ckets	;												
09	Select the Mounting					of the	Power	r Modi	ule and t	he pos	ition of the t	ermina	al box of t	he mo	otor. If ne	eded s	elect a	


Example of Ordering Details

01	02	03	04	05	06	07	08	09
DL	742	- F99	- 66 / 12 (125)/(90)	- G10	OC/CR	- 13	- S338	- O1 / M2/G80
	AC Electric motor	Junction Element	Central Manifold with Pressure range Sequence Valve + Request Setting of the Relief Valve DB in Bar in brackets + Request setting of the sequence valve V2 in Bar in brackets	Setting of flow restrictor on B line	Coil Model and Connector	Gears pump	Oil Tank	Mounting Position and Mounting Brackets

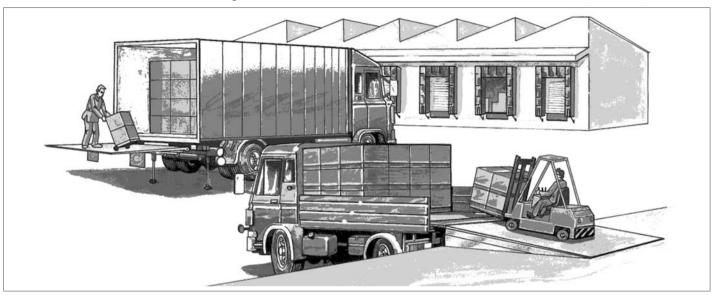
4 **DL series** | Compact power modules Ordering details for compact power modules for dock leveller with telescopic lip (manifold code 73)

Ordering details for compact power modules for dock leveller with telescopic lip (manifold code 73)

01	02		03			04			05		06		07		80		09)
DL		-		-		_/()	-		-		-		-		-	/_	/
Famil	y																	
01	Power mod	dule ty	pe															DL
A.C. E	lectric mo	tor																
02	Select the	requir	ed AC m	otor sl	hown	in the	catalo	gue. (See page	11)								
Junct	ion Elemer	nts																
03	The code of	of the	Junction	Eleme	ent is	shown	in the	page	after the	select	ted AC motor	r.						
Centr	al Manifolo	ł																•
04	Central Ma						f Valve	+ Req	uest Set	ting of	the Relief Va	alve DE	31 in Bar	in bra	ckets + Re	equest	setting	
Flow	restrictor																	
05	Select if no	eeded	the setti	ing of f	flow r	estrict	or on E	3 line	(see pag	e 16)								
Coil N	Model and (Conne	ctor															
06	Choose the	e requ	ired coil	Voltag	ge and	the re	equirec	Conr	nector. (S	See pag	ge 17)							
Gear	pumps																	
07	Select the	requir	ed pump	o. (See	page	19)												
Oil Ta	nk																	
08	Select the	requir	ed Oil Ta	ank (Se	ee pa	ge 20)												
Moun	ting Positio	on and	l Mounti	ng Bra	ckets	5												
09	Select the Mounting I					of the	Power	r Modi	ule and t	he pos	ition of the t	ermina	al box of t	he mo	otor. If ne	eded s	elect a	

Example of Ordering Details

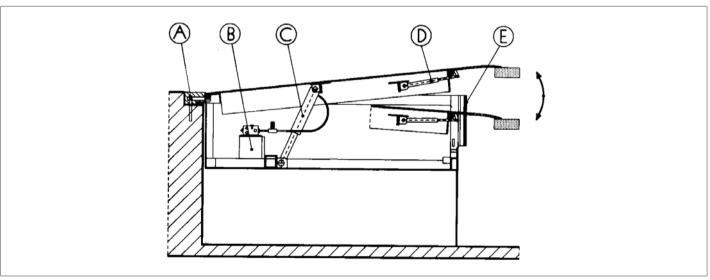
01	02	03	04	05	06	07	08	09
DL	725	- F99	- 73 / 20 (150)/(140)	- G12	- oc/wc	- 12	- \$343	O1/G00
	AC Electric motor	Junction Element	Central Manifold with Pressure range Relief Valve + Request Setting of the Relief Valve DB1 in Bar in brackets + Request setting of the Relief Valve DB2 in Bar in brackets.	Setting of flow restrictor on B line		Gears pump	Oil Tank	Mounting Position and Mounting Brackets


6

General Technical Data for Compact Power Module DL

Application description:

A Dock leveller is a structure which is typically fixed at the doors of the warehouse to load/unload goods. It's used as


a crossing bridge by Forklift, Transpallet etc, between the floor of the warehouse and the truck. (Picture 1)

Picture 1 (Example of dock leveller)

Hydraulic system description:

In a Dock leveller the hydraulic system is characterized by a main single acting cylinder C (in some case 2 single acting cylinders connect to the same ports of the compact power module) for the lifting function and a single acting cylinder to move the lip D in case of Dock leveller with a hinged lip (picture 2-3) or a double acting cylinder in case of Dock leveller with a telescopic lip. (Picture 4)

Picture 2 (typical Hydraulic Dock leveller scheme)

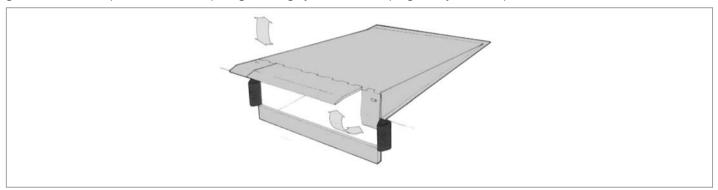
- A) Dock leveller anchorage
- B) Compact Power Module

- C) Single acting cylinder to lift the dock leveller
- D) Lip movement cylinder
- E) Rubber protection

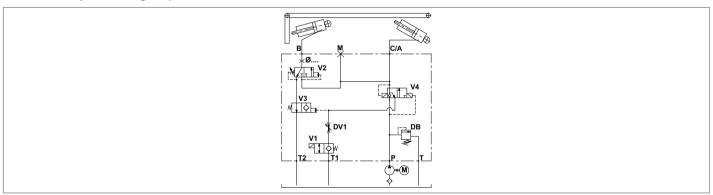
How the system works:

Hydraulic Dock leveller with Single acting cylinders hinged lip (Picture 3)

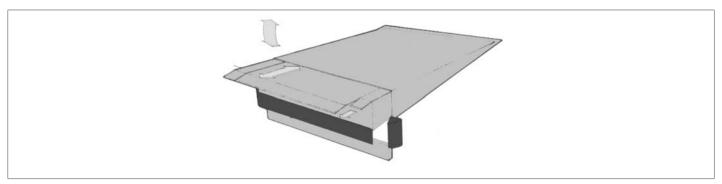
Lifting phase: By switching on the electric motor, the gear pump pushes oil into the system and with the raising of the pressure the V4 valve changes over giving the possibility for the oil to push the main lifting cylinder connected to the port C/A; The solenoid valve V1 must always be energized or the system doesn't work.


When the main lifting cylinder arrives at the end of the run, the pressure increases and allows for the opening of the V2 sequence valve that starts to put oil into the hinged lip single acting cylinder connected to the port B; The opening speed is set by the dimension of the orifice \emptyset

Lowering phase: By stopping the electric motor, the V4 valve changes over on to the normal position, so the oil goes to the return line, crossing the V1 and through the throttle valve DV1 which maintains a backpressure on the system that causes the changing over of the V3 valve that guarantees a backpressure on the lip single acting cylinder


and for this reason the lip remains lifted while the main single acting cylinder lowers down. When the main singleacting cylinder stops lowering, leaning on the truck, the pressure on the system is out and automatically the V3 valve goes on the normal position, allowing the oil to run on the return line and allowing the lip to lean on to the track. The Dock leveller remains free to swing to compensate the differences on the truck level during the loading/unloading operations.

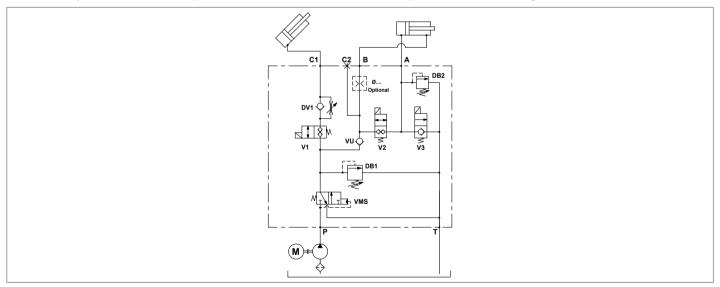
Closing phase: To close the Dock leveller you need to restart the motor by lifting the main cylinder (in consequence the lip cylinder is going to close with a setting speed set by the orifice \emptyset ...).


When the lip is completely close the motor can be switched off and the Dock leveller returns to the normal position. The V1 solenoid valve normally is connected to the emergency push button of the system. Pushing the emergency button the V1 valve return in closed position keeping the cylinder in position.

Picture 3 (Hydraulic hinged lip Dock leveller)

Scheme 1

Picture 4 (Hydraulic telescopic lip Dock leveller)


Hydraulic Dock leveller with double acting cylinder telescopic lip (Picture 4).

Opening phase: On the opening phase you need to switch on the electric motor energizing simultaneously the V1 (1) solenoid valve. The VMS valve changes over and the main cylinder connected to port C lifts: When the main cylinder arrives at the required position, we energize the V2 (2) solenoid valve and in consequence the telescopic lip double acting cylinder comes out in a regenerative mode between the A zone and B zone. When the telescopic lip arrives at the end of stroke the motor is switched off and all the solenoid valves are switched off too, so that the Dock leveller is completely open. The lip exit speed is controlled by the orifice Ø1.2 (optional).

Lowering phase: With the motor switched off the Dock leveller starts to lower itself energizing the V1 (1) solenoid valve which moves the main cylinder, which lowers down until it is leaning itself on the truck. The lowering speed is controlled by the STM12-VU valve.

The VM2 relief valve that is located on the double acting cylinder A line works as an antishock during the lip exit phase and also as protection of the same in case of an occasional bump as the truck stops.

Closing phase. To bring back the Dock leveller to the sleeping position, we need to repeat the opening phase to lift the Dock leveller from the truck and after to retract back the lip we need to energize the V3 (3) solenoid valve which puts the double acting chamber A on the return line.

Scheme 2

Power module selection

Choose the circuit which meets your application requirements.

Take note of all dimensions resulting from the basic components chosen for your application.

NOTE: dimensions may vary slightly and should be confirmed by DCOC, if the assembly is to be installed in a space with narrow clearance.

The tank capacity and the tank dimensions need to be large enough to assure proper pump suction: there must always be a reserve of oil in the tank when all cylinders are fully extended and avoid overflow when cylinders are fully retracted.

The tank must be evaluated also for best separation of air from oil, and for settling down oil contamination. It should be placed in a space with, at least, natural ventilation and it should permit enough heat dissipation to prevent high fluid temperature.

Select the electric motor by evaluating the power needed and the motor compliance with the heat developed during the expected run time (or "duty cycle").

Hydraulic fluid for compact power module

Mineral oil based hydraulic fluids suitable for hydraulic systems can be used; they should have physical lubricating and chemical properties as specified by:

MINERAL OIL BASED HYDRAULIC FLUIDS HL (DIN 51524 part 1)

MINERAL OIL BASED HYDRAULIC FLUIDS HL P(DIN 51524 part 2)

For use of environmentally friendly fluids please consult DCOC.

Fluid viscosity, Temperature range of the operating fluid, Ambient temperature

The fluid viscosity should remain within the range 10 to 300 cSt (centistokes); recommended 15 to 120 cSt .

Permissive cold start viscosity is maximum 2000 cSt .

The fluid temperature should remain within the range -15°C nd 80°C (5°F and 176°F).

Note: For compact power module with plastic tank the fluid temperature should remain within the range -15°C and 70°C (5°F and 158°F).

Ambient temperature -15°C +40°C (5°F and 104°F).

Fluid cleanliness requirements and maintenance

We recommend a cleanliness of the operating fluid according to ISO 4406 Class 20/18/15 or cleaner. All components of the hydraulic circuit, including hoses and actuators, must be flushed and cleaned before

assembling, because the compact power module has a suction filter only.

The hydraulic fluid should be replaced after the first 50 hours, and then every 1000 hours, or, at least, once a year.

Power module installation

The mounting position is basically unrestricted; just avoid installations that could compromise the pump suction, Typically in these applications the Compact Power Module is assembled in horizontal position. It is recommended to support the power module on vibration dampening blocks when the mounting structure is expected to vibrate.

Wiring and starting-up

The cable size and lenght from the power source to the electric motor should be selected in order to avoid voltage drop.

It is strictly forbidden to allow the backwards rotation of the pump even at the first starting: to prevent reverse rotation, the wiring polarities must be correctly connected. Caution: when energized, the surface temperature of the electric motor could reach temperature levels of 60-80°C (140-176°F): care should be taken to avoid any accidental contact of people with the motor surface.

A.C. Motors

The tolerances on the nominal voltage are:

Single phase motor: 230V +/-5% - Three phase motor: 230-400V +/-10%.

Protection degree : IP54 (protection against dust and water splash).

Insulation class: F (155°C) (311°F).

All motors are aluminum alloy die cast without painting.

Central Manifolds

The Central Manifolds shown in the catalogue are made in die cast aluminium alloy or extruded aluminum alloy AL 2011 (Al-Cu5.5Pb0.4Bi0.4 UNI 9002/5).. The validation of the Central Manifolds follows a lifetest with 250 bar (3625 psi) pulsed pressure repeated for 300.000 cycles.

Built-in valves

The valves used in the central manifolds are manufactured using steel with high mechanical strength. Surface treatments protect the exposed parts to the external environment. Standard seals are NBR (BUNA-N) with backup rings in PTFE. The cartridge valves with "leak proof seat design" have an average leakage of 10-15 drops/minute (< 1 cm3/minute (0.06 in3/min)) at the maximum pressure using fluid ISO VG46 at 40°C (104°F). The

validation of the cartridge valves follows a life-test at pulsed maximum pressure (indicated for each valve) repeated for 500.000 cycles.

All the solenoid cartridge valves are fitted with protective O-Rings installed between the pole tube and the coil. These O-Rings protect the internal parts from condensation and contaminants, which could cause malfunction.

All the solenoid cartridge valves are designed for operating in D.C..

Power supply in A.C. requires a connector with bridge rectifier included.

External Gear Pumps

DCOC offers a wide range of External Gear Pumps to cover different kind of applications. The standard version are suitable for the biggest part of applications. All the pumps are pressure compensated to guarantee the best efficiency.

Oil Tanks

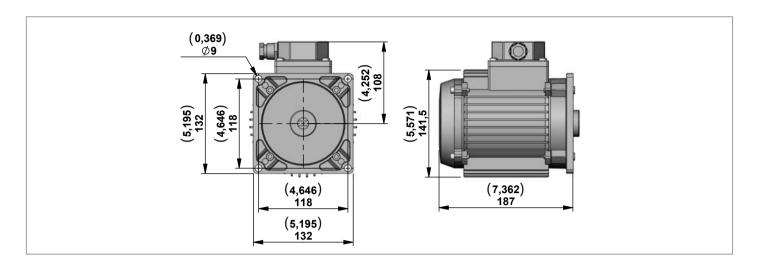
In this catalogue you will find a wide selection of steel and plastic tanks available as a standard product. Steel tanks have Black paint finish and are suitable for operating temperature range -15°C / +80°C (5°F / 176°F). Plastic tanks are obtained in one piece in order to avoid welded parts that are weak points at extreme temperature and vibrations. Plastic tanks are suitable for operating temperature range -15°C / +70°C (5°F / 158°F). Note: even if the plastic tank mounting system is designed to avoid oil leakage the tank must be securely anchored when fitted in mobile equipment and when subject to shocks and heavy vibrations. Please check that the anchorages do not stress or deform the tank.

European machine directive 2006/42/CE

According to the Machine Directive2006/42/CE, a complete power module, as described in paragraph 15 and made available to the European market, enters into the definition of "partly completed machinery".

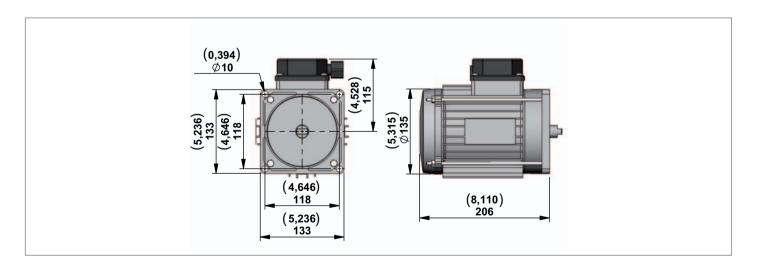
Instead, the power module subassemblies (motor, pump, reservoir, central manifold,...), when not assembled into a complete power pack, are considered "components" which can be employed in a "machinery" or a "partly completed machinery". In this case, the DCOC components and subassemblies must be fitted in compliance with all the relevant technical data sheet applicable to the product, and shall not be operated, adjusted or disassembled before the complete machinery where they are incorporated has been declared to be in compliance with the Machine Directive 2006/42/CE.

Note


All the components shown in the catalogue ARE NOT suitable for use in potentially explosive atmosphere.

Technical information

Below you will find the most common equations used in hydraulics:


	Common Units	Symbols	Equations
Flow	l/min	Q	$Q = \frac{D \times n}{1000} \times 0,95$
Operating pressure	bar	Р	$P = \frac{F}{0.1 \times A}$
Internal diameter hydraulic cylinder	mm	d	-
Area of hydraulic cylinder	mm²	Α	$A = \frac{\Pi \times d^2}{4}$
Piston force	N	F	_
Drive shaft	rev/min	n	_
Power requirement for motor	kW	N	$N = \frac{P \times Q}{612}$
Pump displacement	cm³/rev	D	_
Torque requirement	Nm	М	$M = \frac{D \times d^2}{62.0 \times 0.07}$
			62,8 x 0,87

A.C. Electric Motor Compact Mounting Style for Power Module Type DL

Three Phase Current Motors 230/400V 50Hz IP54 Size IEC 71

Code	Туре	Material Number	Power (kW)	Power (hp)	Poles	Rpm at 50Hz	Duty Cycle	Thermal Switch
724	C1622S1085C	R932000302	0,75	1	2	2900	S3 30%	no
724T	C1622S1368C	R932006634	0,75	1	2	2900	S3 30%	yes
725	C1622S1083C	R932000301	1,1	1,5	2	2900	S3 30%	no
725T	C1622S1374	R932000423	1,1	1,5	2	2900	S3 30%	yes

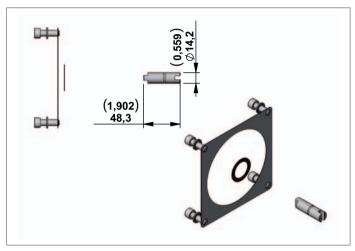
Three Phase Current Motors 230/400V 50Hz IP54 Size IEC 80

Code	Туре	Material Number	Power (kW)	Power (hp)	Poles	Rpm at 50Hz	Duty Cycle	Thermal Switch
826T	C1622S1410C	R932011320	1,5	2	2	2800	S3 20%	yes
827T	C1622S1409C	R932011321	2,2	3	2	2800	S3 15%	yes

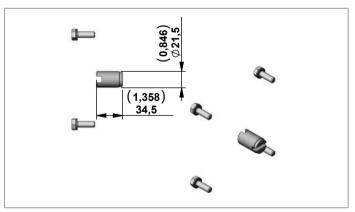
12

The motors shown in these tables are a selection of our range.

In case of needs of different technical characteristics PLEASE CONTACT OUR SALES DEPARTEMENT.


NOTE

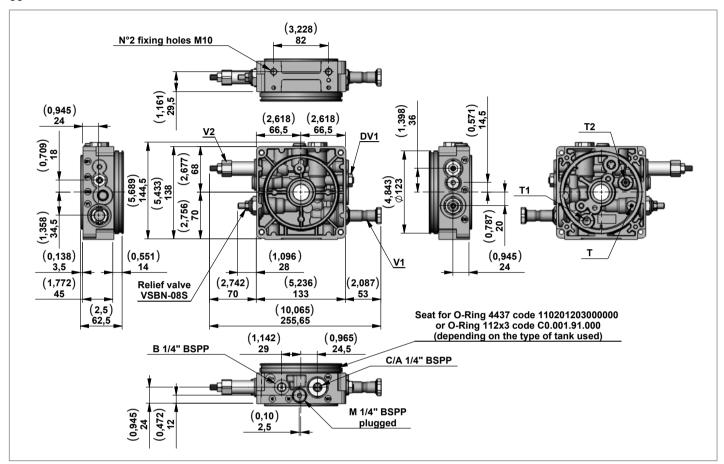
The electric motors shown in this pages are delivered by different certified suppliers.


This means the indicated dimensions could change a little, depending on which manufacturer will be assembled. On the CPM the choice of the manufacturer is based on our stock availability.

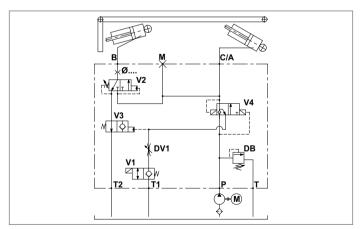
Junction Elements for A.C. Electric Motor Compact Mounting Style for Power Module Type DL

F99

TR08

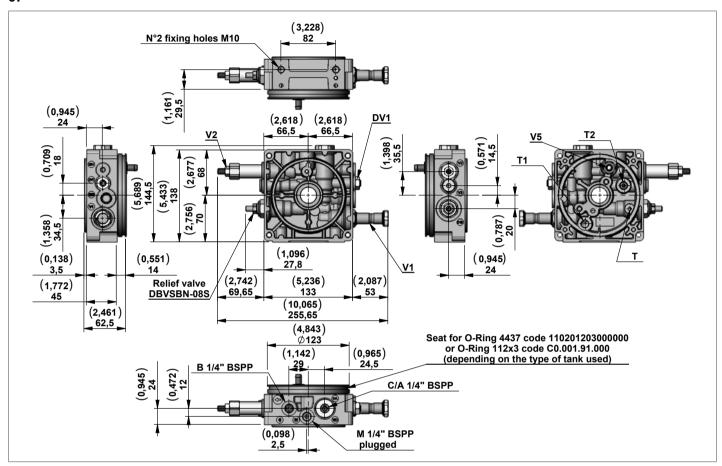


Junction Elements for manifolds MT

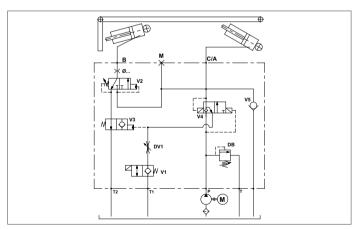

Code	Motor Codes	Size IEC	Туре	Material Number
F99	724-724T-725-725T	71	K01K3970TR105	R932001934
TR08	826T-827T	80	K01KE970TR008	R932001900

Central Manifold DL

66



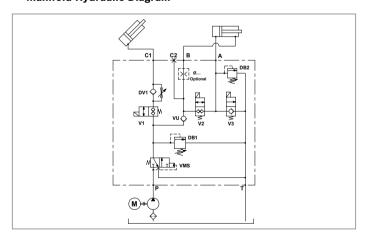
Manifold Hydraulic Diagram



Manifold code with Sequence Valve pressure range	Pressure range Relief Valve DB bar (psi)	Pressure range Sequence Valve V2 bar (psi)	Туре	Material Number
66/12	90-250 (1305-3626)	30-120 (435-1740)	766C120NG	R930052303
66/17	90-250 (1305-3626)	60-170 (870-2465)	766C150NG	R930052304

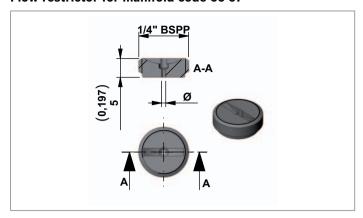
67

Manifold Hydraulic Diagram

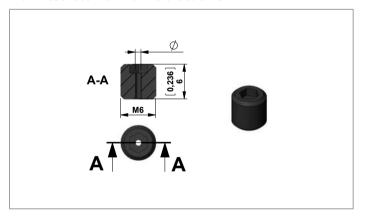


Manifold code with Sequence Valve pressure range	Pressure range Relief Valve DB bar (psi)	Pressure range Sequence Valve V2 bar (psi)	Туре	Material Number
67/12	90-250 (1305-3626)	30-120 (435-1740)	767C120NG	R930052305
67/17	90-250 (1305-3626)	60-170 (870-2465)	767C150NG	R930052306

73


Manifold Hydraulic Diagram

Manifold code with Relief Valve pressure range	Pressure range Relief Valve VM1 bar (psi)	Pressure range Relief Valve VM2 bar (psi)	Туре	Material Number
73/20	90-250 (1305-3626)	90-250 (1305-3626)	773C150NG	R930052310


Flow Restrictor

Flow restrictor for manifold code 66-67

Code	Ø of flow restrictor mm	Material Number
G00	Without flow restrictor	
G07	0,7	R930046181
G08	0,8	R930051905
G11	1,1	R930046182
G13	1,3	R930046183
G15	1,5	R930046184
G18	1,8	R930046185

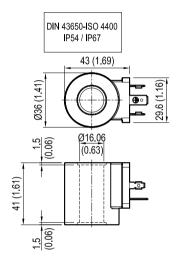
Flow restrictor for manifold code 73

Code	Ø of flow restrictor mm	Material Number				
G00	Without flow restrictor					
G08	0,8	R930006600				
G1	1	R930028268				
G12	1,2	R930028256				
G14	1,4	R930028267				

Coil

Coil D36 - CLASS H - 20 W

Technical Data


Weight: 0.18 kg (0.40 lbs)

Power: 20 W

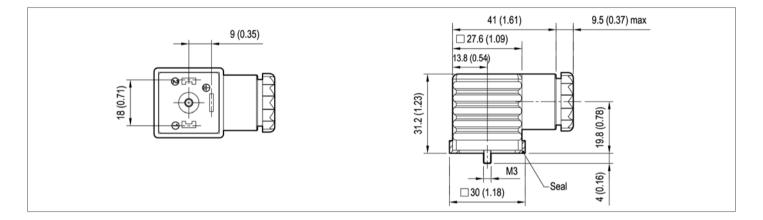
Heat insulation Class H: 180°C (356°F)

Ambient temperature range: -30/+90°C (-22/+194°F)

Further performance limits in terms of temperature and voltage fluctuations: please refer to data sheet of the solenoid valve where D36 coil is mounted.

Coils D36 DIN 43650

CODE	VOLTAGE	HEAT INSULATION CLASS	ТҮРЕ	MATERIAL NUMBER
ОВ	12 Volts D.C.	H (180 °C) (356 °F)	OD02360130OB00	R901393412
ос	24 Volts D.C.	H (180 °C) (356 °F)	OD02360130OC00	R901393577
AH*	205 Volts D.C.	H (180 °C) (356 °F)	OD02360130AH00	R901394231


Note

* AH version especially designed in cases of AC supply voltage 220 AC to be used in conjunction with connector with circuit including wave rectifier. Ambient temperature range for AH versions: -30°C / + 75°C

Connectors

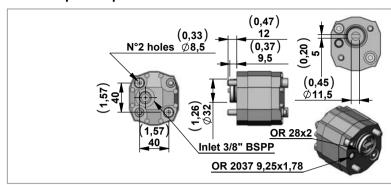
CONNECTOR IP67 - EN175000 (DIN 4350-A) / ISO 4400

Ambient temperature - Standar	rd	°C (°F)	- 20 to + 60 (-4 to +140°F)	
Type of protection according to	DIN 40050		IP67 with cable socket mounted and locked	
Operating voltage		V	Choose the proper ordering code according to the circuit	
Maximum operating current	Standard	Α	16	
	With rectifier	Α	1	
Number of pins			2 + PE	
Clamping range for cables havi	ing an outer diameter of	mm (inch)	5, up to 10 (0,2 up to 0,4)	
Cable entry			Pg9 / Pg11 (unified)	
Maximum cable cross-section		mm² (inch²)	1.5 (0,002)	

Standard Circuit

Code	Colour	Cable entry	Туре	Material Number	
wc	Without Connector				1>
cs	black	Pg9 / Pg11	OD016901000000	R934004344	- 2>
CS	DIACK	LB9 / LBII	00010301000000	N334004344	(a)

Circuit with VDR + Wave Rectifier


Code	Voltage V		Diode Capacity	Colour	Cable entry	Туре	Material Number	
	AC	DC	I max					
CR	230	/	1A	black	Pg9 / Pg11	OD01690201OZ00	R934004353	1+>

Note

Diode with capacity max 1 Amp.

Gear Pumps

Gear Pumps Group 1

P2: intermittent max Pressure.

P3: peak Max Pressure (max 2 seconds)

Code	Displacement cc/rev	Flow at 1500 rpm I/min (gpm)	P2 bar (psi)	P3 bar (psi)	Туре	Material Number
11	1,25	1,88 (0,50)	230(3336)	270(3916)	K01CV79107126	R930068971
12	1,6	2,4 (0,63)	230(3336)	270(3916)	K01CV10110322	R932007475
13	2	3 (0,79)	230(3336)	270(3916)	K01CV10110323	R932007477
14	2,5	3,75 (0,99)	230(3336)	270(3916)	K01CV10112317	R932007479
15	3,15	4,7 (1,24)	210(3046)	250(3626)	K01CV10112318	R932007481

Note

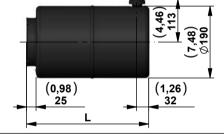
All pumps have anti-clockwise rotation.

Oil Tanks for DL

Technical Data for Plastic Tanks

Temperature range	°C (°F)	-15+70 (5158)
Materials		PE=Polyethylene - PP=Polypropilene
Seal		For tanks codes S335-S336-S337-S338 is necessary to use the O-RING Ø112x3 Code: C000191000 R-Number:R932000190. For all the other tanks except the codes above is necessary to use the O-RING 4437 (Ø110,7x3,53) Code:110201203000000 R-Number:R932000188

				nece	0191000 R-Number essary to use the O e:11020120300000	-RING 4437 (Ø1	
Code	Tank capacity I (USgal)	Useable capacity I (USgal)	L mm (inch)	Material	Туре	Material Number	
S335	1,0 (0,26)	0,7 (0,18)	140 (5,51)	PP	K01K3976SE372	R932002035	(1,30)
S336	1,8 (0,48)	1,2 (0,32)	180 (7,09)	-	K01K3976SE373	R932002036	
S337	2,5 (0,66)	1,7 (0,45)	240 (9,45)	-	K01K3976SE374	R932002037	(5,04)
S338	3,0 (0,79)	2,3 (0,61)	285 (11,22)		K01K3976SE375	R932002038	L L
							For this tanks is necessary to use the O-RING Ø112x3 code: C000191000 R-Number: R932000190
S247	1,8 (0,48)	1,6 (0,42)	170 (6,71)	PE	K01K3976SE271	R932002017	(<u>1,38)35</u>
S248	2,5 (0,66)	2,2 (0,58)	240 (9,45)	-	K01K3976SE272	R932002018	(5,28) (0,68) 134 (17,3)
S343	5,0 (1,32)	3,8 (1,00)	230 (9,05)	PE	K01K3976SE380	R932002039	∵ -
S331	5,0 (1,32)	3,8 (1,00)	230 (9,05)	PE Black	K01K3976SE368	R932007872	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
S413	7,0 (1,85)	5,5 (1,45)	310 (12,20)	PE	K01K3976SE439	R932007873	
S414	7,0 (1,85)	5,5 (1,45)	310 (12,20)	PE Black	K01K3976SE440	R932007874	(2,66) 67,5 (7,28)
S415	8,0 (2,11)	6,5 (1,72)	335 (13,19)	PE	K01K3976SE441	R932006036	
S416	8,0 (2,11)	6,5 (1,72)	335 (13,19)	PE Black	K01K3976SE442	R932007875	L ►
S374	5,0 (1,32)	4,0 (1,06)	219 (8,62)	PE	K01K3976SE415	R932002042	92
S376	7,0 (1,85)	5,4 (1,43)	271 (10,67)	-	K01K3976SE417	R932002044	(4,60) 7,56) 7,192
S378	8,0 (2,11)	6,6 (1,74)	323 (12,72)	-	K01K3976SE419	R932002046	
S380	11,0 (2,91)	9,6 (2,54)	453 (17,83)	-	K01K3976SE421	R932002048	(0,98) 25 (1,57) 40


Assembly Kit for Plastic Tank - DL

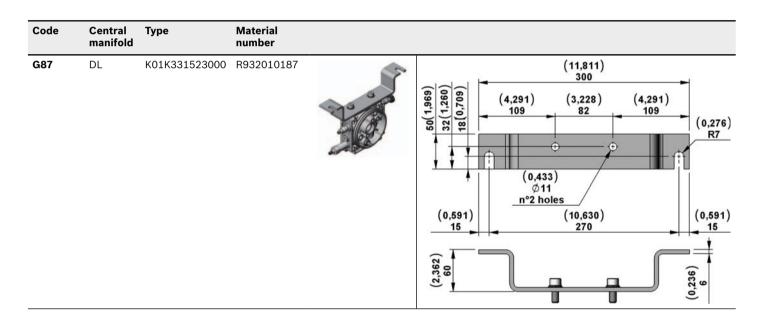
Oil Tank	Code for DL	Material Number	Please make sure that the tank and motor armounted correctly
S335 - S336 - S337 - S338	K2501VT016	R932007391	Exit ports
S247 - S248	K2501VT015	R932008244	Exit
S343 - S331 - S413 - S414 - S415 - S416 - S374 - S376 - S378	K2501VT026	R930053718	

Technical Data for steel Tanks

Temperature range	°C (°F)	-15+70 (5158)
Materials		Steel
Colors		Black paint finish
Seal		For all the steel tanks is necessary to use the O-RING 4437 (Ø110,7x3,53) Code: 110201203000000 R-Number: R932000188

Code	Tank capacity I (USgal)	Useable capacity I (USgal)	L mm (inch)	Туре	Material Number	
S03SD	5,0 (1,32)	4,0 (1,06)	219 (8,62)	K01K3976SE005SD	R932007901	<u></u>

Mounting position


Mounting position		1 Exit 2
Code	Image	Ports
01	1	Theoretic Control of the Control of
02	2	Exit

Terminal Box Position for A.C. Motors

Terminal Box Position for A.C. Motors		6-Standard		7 Exit Ports	
Code	Image		Exit Ports		Polis
-	6				
M2	7	8	Exit	9	Exit Ports
М3	8				
M4	9				

Mounting Brackets

Code	Central manifold	Туре	Material number	
G80	DL	K01F331514000	R932009395	(0,41) Ø10,5 n°2 holes (3,23) 82 (0,35) Ø9 n°4 holes (0,10) 2,5 (1,77) 140 (1,77) 45

Bosch Rexroth Oil Control S.p.A.

Oil Sistem Division
Via Artigianale Sedrio, 12
42030 Vezzano sul Crostolo
Reggio Emilia - Italy
Tel. +39 0522 601 801
Fax +39 0522 606 226 / 601 802
compact-hydraulics-cpm@boschrexroth.com
www.boschrexroth.com/compacthydraulics

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth Oil Control S.p.a.. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.